Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172158, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583619

RESUMO

Urban development has profoundly reduced human exposure to biodiverse environments, which is linked to a rise in human disease. The 'biodiversity hypothesis' proposes that contact with diverse microbial communities (microbiota) benefits human health, as exposure to microbial diversity promotes immune training and regulates immune function. Soils and sandpits in urban childcare centres may provide exposure to diverse microbiota that support immunoregulation at a critical developmental stage in a child's life. However, the influence of outdoor substrate (i.e., sand vs. soil) and surrounding vegetation on these environmental microbiota in urban childcare centres remains poorly understood. Here, we used 16S rRNA amplicon sequencing to examine the variation in bacterial communities in sandpits and soils across 22 childcare centres in Adelaide, Australia, plus the impact of plant species richness and habitat condition on these bacterial communities. We show that sandpits had distinct bacterial communities and lower alpha diversity than soils. In addition, we found that plant species richness in the centres' yards and habitat condition surrounding the centres influenced the bacterial communities in soils but not sandpits. These results demonstrate that the diversity and composition of childcare centre sandpit and soil bacterial communities are shaped by substrate type, and that the soils are also shaped by the vegetation within and surrounding the centres. Accordingly, there is potential to modulate the exposure of children to health-associated bacterial communities by managing substrates and vegetation in and around childcare centres.


Assuntos
Creches , Microbiota , Microbiologia do Solo , Humanos , Solo/química , Bactérias/classificação , RNA Ribossômico 16S , Plantas/microbiologia , Biodiversidade , Ecossistema , Criança , Austrália
2.
Environ Res ; 252(Pt 1): 118814, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38555095

RESUMO

Indigenous health interventions have emerged in New Zealand aimed at increasing people's interactions with and exposure to macro and microbial diversity. Urban greenspaces provide opportunities for people to gain such exposures. However, the dynamics and pathways of microbial transfer from natural environments onto a person remain poorly understood. Here, we analysed bacterial 16S rRNA amplicons in air samples (n = 7) and pre- and post-exposure nasal samples (n = 238) from 35 participants who had 30-min exposures in an outdoor park. The participants were organised into two groups: over eight days each group had two outdoor park exposures and two indoor office exposures, with a cross-over study design and washout days between exposure days. We investigated the effects of participant group, location (outdoor park vs. indoor office), and exposures (pre vs. post) on the nasal bacterial community composition and three key suspected health-associated bacterial indicators (alpha diversity, generic diversity of Gammaproteobacteria, and read abundances of butyrate-producing bacteria). The participants had distinct nasal bacterial communities, but these communities did not display notable shifts in composition following exposures. The community composition and key health bacterial indicators were stable throughout the trial period, with no clear or consistent effects of group, location, or exposure. We conclude that 30-min exposure periods to urban greenspaces are unlikely to create notable changes in the nasal microbiome of visitors, which contrasts with previous research. Our results suggest that longer exposures or activities that involves closer interaction with microbial rich ecological components (e.g., soil) are required for greenspace exposures to result in noteworthy changes in the nasal microbiome.

3.
Ecol Evol ; 14(2): e11018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357595

RESUMO

Soil bacterial taxa have important functional roles in ecosystems (e.g. nutrient cycling, soil formation, plant health). Many factors influence their assembly and regulation, with land cover types (e.g. open woodlands, grasslands), land use types (e.g. nature reserves, urban green space) and plant-soil feedbacks being well-studied factors. However, changes in soil bacterial communities in situ over light-dark cycles have received little attention, despite many plants and some bacteria having endogenous circadian rhythms that could influence soil bacterial communities. We sampled surface soils in situ across 24-h light-dark cycles (at 00:00, 06:00, 12:00, 18:00) at two land cover types (remnant vegetation vs. cleared, grassy areas) and applied 16S rRNA amplicon sequencing to investigate changes in bacterial communities. We show that land cover type strongly affected soil bacterial diversity, with soils under native vegetation expressing 15.4%-16.4% lower alpha diversity but 4.9%-10.6% greater heterogeneity than soils under cleared vegetation. In addition, we report time-dependent and site-specific changes in bacterial network complexity and between 598-922 ASVs showing significant changes in relative abundance across times. Native site node degree (bacterial interactions) at the phylum level was 16.0% higher in the early morning than in the afternoon/evening. Our results demonstrate for the first time that light-dark cycles have subtle yet important effects on soil bacterial communities in situ and that land cover influences these dynamics. We provide a new view of soil microbial ecology and suggest that future studies should consider the time of day when sampling soil bacteria.

4.
Sci Total Environ ; 777: 146063, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33684759

RESUMO

Butyrate is an important mediator of human health and disease. The mechanisms of action of butyrate are becoming increasingly well-known. Many commensal bacteria that inhabit the human gut can synthesise butyrate, which is then absorbed into the human host. Simultaneously, several immune- and inflammatory-mediated diseases are being linked to insufficient exposure to beneficial microbes from our environment, including butyrate-producing bacteria. However, the role of outdoor environmental exposure to butyrate-producing bacteria remains poorly understood. Here we review the literature on the human exposure pathways to butyrate-producing bacteria, with a particular focus on outdoor environmental sources (e.g. associated with plants, plant-based residues, and soil), and the health implications of exposure to them. Emerging evidence suggests that environmental butyrate-producers may help supplement the human gut microbiota and represent an important component of the Biodiversity and Old Friends hypotheses. Improving our understanding of potential sources, precursors, and exposure pathways of environmental butyrate-producers that influence the gut microbiota and butyrate production offers promise to advance multiple disciplines of health and environmental science. We outline research priorities to address knowledge gaps in the outdoor environment-butyrate-health nexus and build knowledge of the potential pathways to help optimise exposure to human-beneficial butyrate-producing bacteria from the outdoor environment during childhood and adulthood.


Assuntos
Microbioma Gastrointestinal , Adulto , Bactérias , Biodiversidade , Butiratos , Suplementos Nutricionais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA